基于关键词相似度的短文本分类方法研究
Research on short text classification based on keyword similarity
1. 华东理工大学 信息科学与工程学院, 上海 200237
2. 石河子大学 信息科学与技术学院, 新疆 石河子 832003
3. 大数据流通与交易技术国家工程实验室——商业智能与可视化技术研究中心, 上海 200436

摘要
在传统的文本分类中,文本向量空间矩阵存在维数灾难和极度稀疏等问题,而提取与类别最相关的关键词作为文本分类的特征有助于解决以上两个问题。针对以上结论进行研究,提出了一种基于关键词相似度的短文本分类框架。该框架首先通过大量语料训练得到word2vec词向量模型;然后通过TextRank获得每一类文本的关键词,在关键词集合中进行去重操作作为特征集合。对于任意特征,通过词向量模型计算短文本中每个词与该特征的相似度,选择最大相似度作为该特征的权重。最后选择K近邻(KNN)和支持向量机(SVM)作为分类器训练算法。实验基于中文新闻标题数据集,与传统的短文本分类方法相比,分类效果约平均提升了6%,从而验证了该框架的有效性。
基金项目
国家自然科学基金资助项目(61462073)
上海市科学技术委员会项目(17DZ1101003,18511106602)
出版信息
DOI: 10.19734/j.issn.1001-3695.2018.04.0440
出版期卷: 《计算机应用研究》 印刷出版, 2020年第37卷 第1期
所属栏目: 算法研究探讨
出版页码: 26-29
文章编号: 1001-3695(2020)01-005-0026-04
发布历史
[2020-01-05] 印刷出版
引用本文
张振豪, 过弋, 韩美琪, 等. 基于关键词相似度的短文本分类方法研究 [J]. 计算机应用研究, 2020, 37 (1): 26-29. (Zhang Zhenhao, Guo Yi, Han Meiqi, et al. Research on short text classification based on keyword similarity [J]. Application Research of Computers, 2020, 37 (1): 26-29. )
关于期刊

- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊