多分支残差注意力机制融合的EPG波形智能识别方法

Research on intelligent recognition method for epg waveforms based on multi-branch and residual attention mechanism integration
曾凡康1
杨凯雯1
刘佳磊2
邢玉清1
李文强1
闫凤鸣2
吴莉莉1
1. 河南农业大学 理学院, 郑州 450002
2. 河南农业大学 植物保护学院, 郑州 450046

摘要

针对昆虫刺吸电位(Electrical Penetration Graph,EPG)信号幅值微弱、多频段耦合与行为边界模糊等识别难点,进行了基于多分支残差注意力网络(Multi-branch Attention-Residual Network,MARNet)的建模研究。该模型采用并行多尺度卷积以刻画局部与长程模式,引入通道与时序注意力以强化关键特征,并通过残差连接提升深层信息传递与训练稳定性。基于标注EPG数据集的对比实验表明,MARNet在精确率、召回率、mAP@0.5与F1等指标上均优于CNN-LSTM、Transformer及ResNet1D,且推理延迟与计算开销较低。结果显示,该方法具备良好的实时分类与泛化能力,可为EPG波形解析与昆虫取食行为量化提供有效技术支撑。

基金项目

国家自然科学基金资助项目(32472647)

出版信息

DOI: 10.19734/j.issn.1001-3695.2025.08.0377
出版期卷: 《计算机应用研究》 优先出版, 2026年第43卷 第5期

发布历史

[2026-01-14] 优先出版

引用本文

曾凡康, 杨凯雯, 刘佳磊, 等. 多分支残差注意力机制融合的EPG波形智能识别方法 [J]. 计算机应用研究, 2026, 43 (5). (2026-01-20). https://doi.org/10.19734/j.issn.1001-3695.2025.08.0377. (Zeng Fankang, Yang Kaiwen, Liu Jialei, et al. Research on intelligent recognition method for epg waveforms based on multi-branch and residual attention mechanism integration [J]. Application Research of Computers, 2026, 43 (5). (2026-01-20). https://doi.org/10.19734/j.issn.1001-3695.2025.08.0377. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊