根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 自2025年1月1日起自动跳转到新域名。

面向自动驾驶的稀疏深度图补全方法SFN-D

SFN-D: depth completion method for sparse depth maps in autonomous driving
吴彬1
赵海燕1
曹健2
陈庆奎1
1. 上海市现代光学系统重点实验室, 光学仪器与系统教育部工程研究中心, 上海理工大学光电信息与计算机工程学院, 上海 200093
2. 上海交通大学 计算机科学与技术系, 上海 200030

摘要

在自动驾驶领域,稀疏深度图的密集化是重要研究课题,对3D重建和3D目标检测等任务具有突出意义。提出一种新颖的深度补全框架SFN-D。该框架基于多模态数据融合和语义分割设计,利用多模态数据各自的优势来补充稀疏深度图中的缺失深度,从而有效补充稀疏深度图。为了实现这一目标,采取一种借助传感器标定进行数据转换从而实现多模态数据融合和深度图修正的方案,该框架融合了来自图像和激光雷达的特征图,可与现有任何优秀的点云语义分割网络和图片分割网络相适配,无需任何专家知识且能够开放性的实现稀疏深度图的深度补全。使用自动驾驶领域中广泛使用的KITTI Depth Compeletion数据集与相似深度补全方法评估了SFN-D,实验结果表明与其他深度补全方法相比,SFN-D有效且有更高的精度。

基金项目

上海市科委创新计划(22DZ1100103)

出版信息

DOI: 10.19734/j.issn.1001-3695.2025.02.0053
出版期卷: 《计算机应用研究》 优先出版, 2025年第42卷 第10期

发布历史

[2025-06-04] 优先出版

引用本文

吴彬, 赵海燕, 曹健, 等. 面向自动驾驶的稀疏深度图补全方法SFN-D [J]. 计算机应用研究, 2025, 42 (10). (2025-06-04). https://doi.org/10.19734/j.issn.1001-3695.2025.02.0053. (Wu Bin, Zhao Haiyan, Cao Jian, et al. SFN-D: depth completion method for sparse depth maps in autonomous driving [J]. Application Research of Computers, 2025, 42 (10). (2025-06-04). https://doi.org/10.19734/j.issn.1001-3695.2025.02.0053. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊