根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 自2025年1月1日起自动跳转到新域名。

基于多维特征融合与残差增强的交通流量预测

Multi-dimensional feature fusion and residual-enhanced learning for traffic flow prediction
张振琳1
郭慧洁1
窦天凤1
亓开元2
吴栋2
曲志坚1
任崇广1
1. 山东理工大学 计算机科学与技术学院, 山东 淄博 255000
2. 济南浪潮数据技术有限公司, 济南 250101

摘要

交通流量预测在智能交通系统中占据核心地位。针对当前交通流量预测方法在特征利用和时空依赖建模方面的不足,提出了一种新的基于多维特征融合与残差增强的交通流量预测模型MFRGCRN(A Multi-dimensional Feature Fusion and Residual-enhanced Graph Convolutional Recurrent Network)。该模型通过结合自编码器、深度可分离卷积及时间卷积全方位挖掘时空相关性,使用门控循环单元与多尺度卷积注意力结合学习数据的关联关系,同时利用多尺度残差增强机制实现对复杂模式的逐步建模。在四个真实数据集上的实验结果表明,所提出的模型在预测性能上优于对比的基线模型,尤其在PEMS08数据集的12步预测任务中,MAE、RMSE和MAPE分别降低约7.7%、2.9%和4.5%,展现出优异的长期预测能力。模型在准确性、稳定性和鲁棒性方面均表现出较强优势,为智能交通系统中复杂交通流建模提供了有效解决方案。

基金项目

山东省高等学校优秀青年创新团队项目(2019KJN048)

出版信息

DOI: 10.19734/j.issn.1001-3695.2025.06.0168
出版期卷: 《计算机应用研究》 优先出版, 2025年第42卷 第12期

发布历史

[2025-08-21] 优先出版

引用本文

张振琳, 郭慧洁, 窦天凤, 等. 基于多维特征融合与残差增强的交通流量预测 [J]. 计算机应用研究, 2025, 42 (12). (2025-08-21). https://doi.org/10.19734/j.issn.1001-3695.2025.06.0168. (Zhang Zhenlin, Guo Huijie, Dou Tianfeng, et al. Multi-dimensional feature fusion and residual-enhanced learning for traffic flow prediction [J]. Application Research of Computers, 2025, 42 (12). (2025-08-21). https://doi.org/10.19734/j.issn.1001-3695.2025.06.0168. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊