融合迁移学习和解纠缠负采样的去偏推荐方法
Debiasing recommendation method integrating transfer learning and disentangled negative sampling
重庆邮电大学 a. 通信与信息工程学院; b. 移动通信技术重庆市重点实验室, 重庆 400065

摘要
针对现有去偏推荐方法在选择负样本时将样本作为一个整体考虑导致的采样偏差问题,以及不平衡的热门-长尾项目表征学习无法有效缓解数据稀疏的问题,提出融合迁移学习和解纠缠负采样的去偏推荐方法(DTDN)。该方法首先利用交互行为中的对撞效应设计负采样模块;其次,根据采样数据设计特征解耦模块对用户和正负样本的特征进行解耦表征学习(DRL);然后,在表征学习阶段引入迁移学习模块,以对齐热门项目和长尾项目的表征分布;最后,基于解耦表征设计样本选择器去除数据中的固有偏差,帮助模型准确学习用户和正负样本特征中的规律。在两个实际应用数据集上的广泛实验结果表明,与最优的基线方法CD2AN相比,DTDN的各项性能指标均有明显的提升,验证了DTDN在降低推荐系统偏差负面影响方面的有效性。
基金项目
国家自然科学基金资助项目(61971080)
出版信息
DOI: 10.19734/j.issn.1001-3695.2024.09.0296
出版期卷: 《计算机应用研究》 印刷出版, 2025年第42卷 第4期
所属栏目: 算法研究探讨
出版页码: 1115-1121
文章编号: 1001-3695(2025)04-020-1115-07
发布历史
[2025-04-05] 印刷出版
引用本文
刘琦, 唐宏, 杨力鸣. 融合迁移学习和解纠缠负采样的去偏推荐方法 [J]. 计算机应用研究, 2025, 42 (4): 1115-1121. (Liu Qi, Tang Hong, Yang Liming. Debiasing recommendation method integrating transfer learning and disentangled negative sampling [J]. Application Research of Computers, 2025, 42 (4): 1115-1121. )
关于期刊

- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊