根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 自2025年1月1日起自动跳转到新域名。

基于行为克隆的机械臂多智能体深度强化学习轨迹跟踪控制

Multi-agent deep reinforcement learning tracking control for robotic manipulator based on behavior cloning
易佳豪
王福杰
胡锦涛
秦毅
郭芳
罗俊轩
东莞理工学院 计算机学院, 广东 东莞 523000

摘要

针对具有非线性干扰以及多变环境的机械臂轨迹跟踪问题,提出了一种结合行为克隆(behavior cloning,BC)的多智能体深度强化学习(multi-agent deep reinforcement learning,MDRL)控制方法。多智能体控制算法中包含了以孪生延迟深度确定性策略梯度算法(twin delayed deep deterministic policy gradient algorithm,TD3)为基底算法的比例积分微分智能体(proportional-integral-derivative agent,PID agent)和直接用深度强化学习策略输出扭矩的智能体(direct deep reinforcement learning agent,DDR agent),并采用两个奖励函数来优化两个agent的策略网络。PID agent用于输出PID控制器的参数,再由PID控制器输出力矩控制机械臂以增加控制器的跟踪泛性,DDR agent则直接输出扭矩增加控制器的抗干扰性。为了克服多智能体训练难度高的问题,在训练中引入行为克隆技术,利用PID控制器的专家经验对PID agent进行预训练,形成预策略在训练初期就可以输出较合适的PID参数,增加有效经验来加速训练过程的奖励收敛。为了验证方法的有效性,通过欧拉拉格朗日建模二自由度机械臂,并在具有干扰的多种环境下进行仿真实验对比。实验结果表明,所提算法在具有随机干扰环境以及与训练轨迹不同的跟踪轨迹中都具有最好的跟踪效果,验证了所提算法的有效性。

基金项目

国家自然科学基金资助项目(62203116,62103106)
广东省基础与应用基础研究面上项目(2024A1515010222)
广东省教育厅特色创新项目(2022KTSCX138,2022ZDZX1031)
东莞市社会发展科技项目重点项目(20231800935882)
松山湖科技特派员项目(20234430-01KCJ-G)

出版信息

DOI: 10.19734/j.issn.1001-3695.2024.09.0340
出版期卷: 《计算机应用研究》 印刷出版, 2025年第42卷 第4期
所属栏目: 强化学习专题
出版页码: 1025-1033
文章编号: 1001-3695(2025)04-008-1025-09

发布历史

[2025-04-05] 印刷出版

引用本文

易佳豪, 王福杰, 胡锦涛, 等. 基于行为克隆的机械臂多智能体深度强化学习轨迹跟踪控制 [J]. 计算机应用研究, 2025, 42 (4): 1025-1033. (Yi Jiahao, Wang Fujie, Hu Jintao, et al. Multi-agent deep reinforcement learning tracking control for robotic manipulator based on behavior cloning [J]. Application Research of Computers, 2025, 42 (4): 1025-1033. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊