根据国家网信办相关规定和要求,《计算机应用研究》编辑部网站域名更换为arocmag.cn,原域名 arocmag.com 自2025年1月1日起自动跳转到新域名。

基于自适应联邦学习的边端协同网络异常流量检测模型

Abnormal traffic detection model for edge collaborative networks based on adaptive federated learning
陈涛1
薛皓铭1
马宇翔1
管浩琪2
1. 河南大学 计算机与信息工程学院, 开封 475000
2. 河南大学 国际(欧美)理工学院, 郑州 450046

摘要

随着人工智能发展,边端协同网络在智能决策与本地数据处理中的应用日益广泛。然而,边端协同网络存在隐私泄露、计算资源受限和数据不平衡等问题。针对上述问题,提出一种基于自适应联邦学习的异常流量检测模型,在保护隐私的同时提升检测性能。首先,提出一种基于方差的特征选择算法以降低计算开销;其次,提出一种基于对比生成式对抗网络,缓解数据不平衡问题;再次,构建自适应联邦学习更新策略,通过条件策略网络自动分离全局与本地特征信息,从而增强模型在异构数据下的泛化能力。最后,设计一种基于卷积神经网络的轻量级编码器,实现异常流量检测。实验结果表明,所提方法能够有效检测边端协同网络异常流量,提高异常检测准确率。本文源代码链接:https://github.com/henulab/AFL-ATD。

基金项目

河南省优秀青年基金资助项目(252300421230)
河南省重点研发专项项目(241111212800)

出版信息

DOI: 10.19734/j.issn.1001-3695.2025.03.0096
出版期卷: 《计算机应用研究》 优先出版, 2025年第42卷 第11期

发布历史

[2025-07-03] 优先出版

引用本文

陈涛, 薛皓铭, 马宇翔, 等. 基于自适应联邦学习的边端协同网络异常流量检测模型 [J]. 计算机应用研究, 2025, 42 (11). (2025-07-08). https://doi.org/10.19734/j.issn.1001-3695.2025.03.0096. (Chen Tao, Xue Haoming, Ma Yuxiang, et al. Abnormal traffic detection model for edge collaborative networks based on adaptive federated learning [J]. Application Research of Computers, 2025, 42 (11). (2025-07-08). https://doi.org/10.19734/j.issn.1001-3695.2025.03.0096. )

关于期刊

  • 计算机应用研究 月刊
  • Application Research of Computers
  • 刊号 ISSN 1001-3695
    CN  51-1196/TP

《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。

《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。

《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。


收录和评价

  • 第二届国家期刊奖百种重点期刊
  • 中国期刊方阵双效期刊
  • 全国中文核心期刊(北大2023年版)
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)来源期刊
  • RCCSE中国核心学术期刊
  • 中国计算机学会会刊
  • 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
  • 中国科技期刊精品数据库全文来源期刊
  • 中国学术期刊综合评价数据库来源期刊
  • 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
  • 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
  • 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
  • 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
  • 英国《科学文摘》(INSPEC)来源期刊
  • 《日本科学技术振兴机构数据库》(JST)来源期刊
  • 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
  • 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
  • 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
  • 波兰《哥白尼索引》(IC)来源期刊
  • 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊