基于Mamba-Unet架构的3DMRI脑肿瘤分割方法
3D MRI brain tumor segmentation method based on Mamba-Unet architecture
大连民族大学 理学院, 辽宁 大连 116000

摘要
多模态MRI脑肿瘤影像的精准分割对脑癌临床诊疗及预后评估至关重要。针对卷积神经网络在捕获全局上下文信息和建立长远程依赖关系方面存在的局限性,研究提出了基于Mamba与U-Net融合架构的Polyhedron Conv-Tri-orientated Mamba(PhC-ToMamba)分割模型。模型在瓶颈层嵌入了Tri-orientated Mamba模块(ToM)旨在有效建模高维特征的全局信息,通过从三个方向计算特征依赖关系并交互,提取更适用于三维图像的全局特征信息。此外,为进一步提升全局特征的提取能力,提出了一种新的多面体卷积(PhConv)并将其嵌入至编码器中,显著扩大了感受野并提升对重点目标区域的特征提取能力。有效解决了当前主流脑肿瘤图像分割模型对全局信息感知的局限性问题,增强了对关键区域的关注度。在BraTS 2021和MSD Task01_BrainTumor数据集上进行了广泛的实验。实验结果显示,PhC-ToMamba在整个肿瘤、肿瘤核心和增强肿瘤分割任务中的Dice系数分别达到了95.05%/90.46%、94.53%/89.91%和90.74%/75.91%。与其他先进方法相比,PhC-ToMamba在分割精度和参数效率方面展现了优越性,为脑肿瘤分割任务提供稳健的解决方案,从而提高诊断准确性。
基金项目
国家自然科学基金资助项目(11872145)
辽宁省教育厅基本科研项目(JYTMS20231805)
出版信息
DOI: 10.19734/j.issn.1001-3695.2025.03.0147
出版期卷: 《计算机应用研究》 优先出版, 2025年第42卷 第12期
发布历史
[2025-08-06] 优先出版
引用本文
张野, 牛大田. 基于Mamba-Unet架构的3DMRI脑肿瘤分割方法 [J]. 计算机应用研究, 2025, 42 (12). (2025-08-06). https://doi.org/10.19734/j.issn.1001-3695.2025.03.0147. (Zhang Ye, Niu Datian. 3D MRI brain tumor segmentation method based on Mamba-Unet architecture [J]. Application Research of Computers, 2025, 42 (12). (2025-08-06). https://doi.org/10.19734/j.issn.1001-3695.2025.03.0147. )
关于期刊

- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊