融合液态神经网络与多层级图卷积的关系抽取方法
Relation extraction method integrating liquid neural networks and hierarchical graph convolution
五邑大学电子与信息工程学院, 广东 江门 529020

摘要
针对自然语言处理中关系抽取任务在建模长距离依赖与复杂语义理解方面的不足,提出了一种融合液态神经网络与多层级图卷积网络的关系抽取模型BLGAM。该模型首先利用BERT对输入句子进行上下文语义编码,获得初始文本表示;随后通过基于闭式连续时间解的液态神经网络捕捉动态时序特征,建模长距离依赖信息;同时结合依存句法和实体结构构建多层级图卷积网络,提取局部与全局结构化语义特征;最后采用注意力门控机制对时序特征与结构特征进行加权融合,并通过多层感知机提升实体对关系识别的准确性与鲁棒性。在NYT和WebNLG两个公开数据集上的实验结果表明,该模型的F1值分别达到92.6%和92.1%,均优于现有主流基线,验证了液态神经网络在长距离依赖建模与动态信息捕捉方面的显著优势,以及多层级图卷积网络在挖掘实体间隐含结构联系上的补充作用。该方法为复杂语义场景下的关系抽取提供了高效解决方案。
基金项目
广东省本科高校教学质量与教学改革工程建设项目(GDJX2023013)
五邑大学教学质量工程与教学改革工程项目(JX2023012)
出版信息
DOI: 10.19734/j.issn.1001-3695.2025.06.0183
出版期卷: 《计算机应用研究》 优先出版, 2026年第43卷 第1期
发布历史
[2025-09-13] 优先出版
引用本文
李子亮, 李兴春. 融合液态神经网络与多层级图卷积的关系抽取方法 [J]. 计算机应用研究, 2026, 43 (1). (2025-09-17). https://doi.org/10.19734/j.issn.1001-3695.2025.06.0183. (Li Ziliang, Li Xingchun. Relation extraction method integrating liquid neural networks and hierarchical graph convolution [J]. Application Research of Computers, 2026, 43 (1). (2025-09-17). https://doi.org/10.19734/j.issn.1001-3695.2025.06.0183. )
关于期刊

- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊