基于大语言模型与图神经网络的会话推荐增强框架
Session-based recommendation enhancement framework based on large language models and graph neural network
山东科技大学 计算机科学与工程学院, 山东 青岛 266590

摘要
随着会话推荐的广泛应用,如何充分利用语义信息、建模用户跨会话兴趣以及抑制数据噪声成为提升推荐性能的关键。研究提出一种新颖的会话推荐增强框架LGSBR,通过整合大语言模型(LLM,Large Language Model)的语义理解能力与图神经网络(GNN,Graph Neural Network)的结构建模能力,实现语义增强与个性化推荐。具体而言,利用大语言模型及微调的语言模型生成项目补充文本嵌入和用户跨会话兴趣嵌入,通过软注意力机制融合文本与ID嵌入,生成语义丰富的项目表示;引入用户兴趣嵌入,结合对齐损失实现个性化推荐;最后通过两阶段权重学习过滤噪声项目,优化会话表示。实验结果表明,在Beauty数据集上,LGSBR的P@20达到21.38%,MRR@20达到6.76%,分别较SR-GNN基线提升23.3%和50.56%;在ML-1M数据集上,P@20为25.86%,MRR@20为7.58%,分别提升12.63%和10.98%,研究验证了LGSBR在多种GNN模型上的通用性和有效性。
基金项目
国家自然科学基金资助项目(52374221)
国家重点研发计划资助项目(2022ZD0119501)
山东省自然科学基金资助项目(ZR2022MF288,ZR2023MF097)
出版信息
DOI: 10.19734/j.issn.1001-3695.2025.06.0201
出版期卷: 《计算机应用研究》 优先出版, 2026年第43卷 第1期
发布历史
[2025-09-17] 优先出版
引用本文
于恩海, 温彦, 陈宇翱. 基于大语言模型与图神经网络的会话推荐增强框架 [J]. 计算机应用研究, 2026, 43 (1). (2025-09-17). https://doi.org/10.19734/j.issn.1001-3695.2025.06.0201. (Yu Enhai, Wen Yan, Chen Yu'ao. Session-based recommendation enhancement framework based on large language models and graph neural network [J]. Application Research of Computers, 2026, 43 (1). (2025-09-17). https://doi.org/10.19734/j.issn.1001-3695.2025.06.0201. )
关于期刊

- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊