基于大模型的污染规范提取方法
Taint specification extraction based on llm
1. 南京理工大学 计算机科学与工程学院, 南京 210094

摘要
随着移动应用的广泛普及,隐私泄露问题日益成为亟待解决的挑战。现有的隐私泄露分析技术通常依赖预定义的源和汇API(Application Programming Interface)列表,即污染规范,而传统污染规范提取方法多采用手动筛选或机器学习算法,难以适应大规模应用场景,且误报率较高。针对上述问题,提出一种基于大模型的污染规范提取方法,名为TaintLM。TaintLM以官方API文档为主要输入,并构造精心设计的指令驱动大模型进行多任务学习,实现源汇分类和语义分类;同时,针对当前领域数据不平衡问题,提出一种多任务迭代微调策略,将半监督学习引入多任务学习框架中,通过半监督学习生成伪标签数据并在微调过程中迭代优化模型性能。实验结果表明,TaintLM在源汇分类和语义分类任务上的F1分数分别为0.92和0.94,优于现有主流方法。该方法提升了污染规范提取的准确性,验证了其在污染规范提取中的有效性,为移动应用隐私保护提供了高效的技术支持。
出版信息
DOI: 10.19734/j.issn.1001-3695.2025.03.0077
出版期卷: 《计算机应用研究》 优先出版, 2025年第42卷 第10期
发布历史
[2025-06-04] 优先出版
引用本文
方梦麒, 徐建. 基于大模型的污染规范提取方法 [J]. 计算机应用研究, 2025, 42 (10). (2025-06-04). https://doi.org/10.19734/j.issn.1001-3695.2025.03.0077. (Fang Mengqi, Xu Jian. Taint specification extraction based on llm [J]. Application Research of Computers, 2025, 42 (10). (2025-06-04). https://doi.org/10.19734/j.issn.1001-3695.2025.03.0077. )
关于期刊

- 计算机应用研究 月刊
- Application Research of Computers
-
刊号
ISSN 1001-3695
CN 51-1196/TP
《计算机应用研究》创刊于1984年,是由四川省科技厅所属四川省计算机研究院主办的计算技术类学术刊物。
《计算机应用研究》瞄准本学科领域迫切需要的前沿技术,及时反映国内外计算机应用研究的主流技术、热点技术及最新发展趋势。主要刊载内容包括本学科领域高水平的学术论文、本学科最新科研成果和重大应用成果。栏目内容涉及计算机学科新理论、计算机基础理论、算法理论研究、算法设计与分析、区块链技术、系统软件与软件工程技术、模式识别与人工智能、体系结构、先进计算、并行处理、数据库技术、计算机网络与通信技术、信息安全技术、计算机图像图形学及其最新热点应用技术。
《计算机应用研究》拥有众多高层次读者、作者,读者对象主要为从事计算机学科领域高、中级研究人员及工程技术人员,各高等院校计算机专业及相关专业的师生。多年来《计算机应用研究》的总被引频次及Web下载率一直名列本学科同类学术刊物前茅,所刊发的学术论文以其新颖性、学术性、前瞻性、导向性、实用性而备受广大读者的喜爱。
收录和评价
- 第二届国家期刊奖百种重点期刊
- 中国期刊方阵双效期刊
- 全国中文核心期刊(北大2023年版)
- 中国科技核心期刊
- 中国科学引文数据库(CSCD)来源期刊
- RCCSE中国核心学术期刊
- 中国计算机学会会刊
- 2020—2022年科技期刊世界影响力指数(WJCI)报告收录期刊
- 中国科技期刊精品数据库全文来源期刊
- 中国学术期刊综合评价数据库来源期刊
- 《中国期刊网》《中国学术期刊(光盘版)》来源期刊
- 2017—2019年中国国际影响力优秀学术期刊(自然科学与工程技术)
- 中国精品科技期刊顶尖学术论文(F5000)项目来源期刊
- 《中国工程技术电子信息网》《电子科技文献数据库》来源期刊
- 英国《科学文摘》(INSPEC)来源期刊
- 《日本科学技术振兴机构数据库》(JST)来源期刊
- 俄罗斯《文摘杂志》(AJ, VINITI)来源期刊
- 美国《艾博思科学术数据库》(EBSCO)全文来源期刊
- 美国《剑桥科学文摘(自然科学)》(CSA(NS))核心期刊
- 波兰《哥白尼索引》(IC)来源期刊
- 美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录期刊